home *** CD-ROM | disk | FTP | other *** search
/ 800 College Boards / 800 College Boards.iso / cbrd56 / bbb < prev    next >
Text File  |  1984-07-30  |  17KB  |  1 lines

  1. :SB                                     :SH1127A  D  y    B                     :SH0431C                                :SH0537E                                :SH0932k                                :SP189089210089210032210032             :SP258040210089254089254089             :SF                                     B. Complementary and Supplementary             Angles and Angle Sums.                                                   Make sure you know these                theorems, definitions and               assumptions.                                                                    NOTE: < = Angle                               ^ = Degrees                                                               1. Two angles whose sum                 is a right angle are                    complementary.                                                                       <k + <y = 90^                                                              2. Two angles whose sum is              180^ are supplementary.                                                            <ADE + <y = 180^                     :RA                                     :SD                                     :SB                                     :SH0828A   a  b B                       :SH0536C                                :SH1230D                                :SH1030d  c                             :SP196064252064252064252064             :SP247040224064210088210088             :SF                                     3. The sum of the angles                about a point is 360^.                                                          <a + <b + <c + <d = 360^                                                        4. The sum of the angles                about a point on one side               of a straight line is                   180 degrees.                                                                        <a + <b = 180^                                                                  <c + <d = 180^                      :RA                                     :SD                                     :SB                                     :SH0927A           C                    :SH0333B                                :SP189064224028259064189064             :SF                                     5. The sum of the angles                of a triangle is 180^.                                                          <A + <B + <C = 180^                     :RA                                     :SD                                     :SB                                     :SH0827A                                :SH0735B                                :SH0939C                                :SH1432D                                :SP189064244056266072217104             :SP217104189064189064189064             :SF                                     6. The sum of the angles of a           quadrilateral is 360^.                                                          <A + <B + <C + <D = 360^                :RA                                     :SD                                     :SB                                     :SP196024210016245032252056             :SP252056217064196048196024             :SH0328A                                :SH0231B                                :SH0436C                                :SH0737D                                :SH0932E                                :SH0628F                                :SF                                     7. The sum of the angles                of a polygon of n sides                 is 180 (n - 2) degrees.                                                         Note: In the diagram                    (hexagon ABCDEF), the                   sum of the angles is:                                                           180(6 - 2) degrees = 720^               :RA                                     :SD                                     :SB                                     :SH0829A   E   B                        :SH0431C                                :SH0636D                                :SP203055252055252055252055             :SP200032224055245050245050             :SF                                     :Q                                      1. Given: CE PERPINDICULAR ED;          <AEC = 70^. Find: <BED                                                          (a) 20^  (b) 70^  (c) 90^                                                       (d) 110^  (e) 180^                      :RCA                                    1. (a) 20^ Ans.                                                                 The sum of the angles                   about a point on one side               of a straight line is 180^              therefore:                                                                       <BED + <DEC + <AEC = 180^                                                      Since   CE PERPINDICULAR ED, <DEC =  90^                                         <BED +  90^ +  70^ = 180^                                                                     <BED =  20^ Ans.         :RA                                     :SD                                     :Q                                      :SB                                     :SH0828A         B                      :SH0338C                                :SH1038D                                :SH0931E                                :SP190060257060257060257060             :SP254025210060250070250070             :SF                                     2. Given: <CED is a right angle. <CEB   is 50^ Find: <AED                                                               (a) 40^  (b) 90^  (c) 130^                                                      (d) 140^  (e) It cannot                 be determined from the                  information given.                      :RCD                                    2. (d) 140^ Ans.                                                                  <CEB + <BED =  90^                                                               50^ + <BED =  90^                                                                     <BED =  40^                                                            Since the sum of the                    angles about a point                    on one side of a                        straight line is 180^,                                                            <BED + <AED = 180^                                                               40^ + <AED = 180^                                                                     <AED = 140^ Ans.               :RA                                     :Q                                      3. <CED is a right angle, and <AEC =    <AED. Find the number                   of degrees in <CEB.                                                             (a) 45  (b) 90  (c) 135                                                         (d) 180  (e) 20                         :RCA                                    3. (a) 45 Ans.                                                                  The sum of the angles                   around a point is 360^.                 Therefore:                                                                      <CED + <AEC + <AED = 360^                                                        90^ + <AEC + <AED = 360^                                                              <AEC + <AED = 270^                                                                            270^                      <AEC = <AED = ----                                     2                                                                            = 135^               :RA                                             <AEC + <CEB = 180^                                                              135^ + <CEB = 180^                                                                     <CEB =  45^ Ans.         :RA                                     :SD                                     :Q                                      4. In {ABC, <A:<B:<C = 1:2:3. Find the  number of degrees in <B.                                                        (a) 15  (b) 30  (c) 45  (d) 60  (e) 90  :RCD                                    4. (d) 60 Ans.                                                                     <A + <B + <C = 180^                                                              y + 2y + 3y = 180                                                                        6y = 180                                                                         y = 30                                                                    <B = 2y = 60^  Ans.             :RA                                     :Q                                      5. In {ABC, <A = 3<B, and <B = 2<C.     Find the number of degrees in <C.                                               (a) 10  (b) 20  (c) 40  (d) 60                                                  (e) 120                                 :RCB                                    5. (b) 20 Ans.                                                                         <A + <B + <C = 180^                                                              6y + 2y + y = 180                                                                        9y = 180                                                                         y = 20                                                                     <C = y = 20^  Ans.         :RA                                     :Q                                      :SB                                     :SP196055266055217032210055             :SP266055279055279055279055             :SH0828D  A      B E                    :SH0432C                                :SF                                     6. If <DAC = 120^ and <EBC = 150^, then {ABC is:                                                                        (a) equiangular                         (b) equilateral                         (c) isosceles                           (d) right                               (e) It cannot be                            determined from the                     information given                   :RCD                                    6. (d) right Ans.                                                               Since the sum of angles                 about a point on one side               of a straight line is 180^                                                          <DAC + <CAB = 180^                                                              120^ + <CAB = 180^                                                                     <CAB =  60^                  and                                                                                 <EBC + <ABC = 180^                                                              150^ + <ABC = 180^                                                                     <ABC =  30^                  :RA                                     The sum of the angles of                a triangle is 180^.                     Therefore:                                                                      <CAB + <ABC + <ACB = 180^                                                        60^ +  30^ + <ACB = 180^                                                                     <ACB =  90^,                                                      making {ABC a right                     triangle. Ans.                          :RA                                     :SD                                     :Q                                      :SB                                     :SH0330A                                :SH1127D  C        B                    :SH1238E                                :SP203079203024273096273096             :SP182079256079256079256079             :SF                                     7. If <DCA = 2<A, and                   <CBE = 3<A, then the                    number of degrees in                    <A is:                                                                          (a) 15  (b) 30  (c) 45                                                          (d) 74  (e) 75                          :RCC                                    7. (c) 45^ Ans.                                                                 The sum of the angles                   of a triangle is 180^                                                            <A + <B + <C = 180^                                                            Since the sum of the                    angles about a point                    on one side of a                        straight line is 180^:                                                          <C = (180^ - 2A)                                                                <B = (180^ - 3A)                                                                <A + (180^ - 3A) + (180^ - 2A) = 180^                                           <A = 45^ Ans.                           :RA                                     :SD                                     :Q                                      :SB                                     :SP189064244056266072217104             :SP217104189064189064189064             :SH0827A                                :SH0735B                                :SH0939C                                :SH1432D                                :SF                                     8. In quadrilateral ABCD, <A = y^, <B = 2y^, <C = y - 30^, and <D = y + 30^     Find the number of degrees in <A.                                               (a) 36  (b) 43  (c) 72                                                          (d) 102  (e) 144                        :RCC                                    8. (c) 72 Ans.                                                                  <A + <B + <C + <D = 360^                                                        y + 2y + y - 30 + y + 30                                                                          = 360                                                                        5y = 360                                                                         y = 72^                                                               <A = y = 72^  Ans.                :RA                                     :SD                                     :Q                                      9. Each angle of an equiangular         pentagon (a polygon of 5 sides) is:                                             (a) 72^  (b) 90^  (c) 108^  (d) 180^                                            (e) 540^                                :RCC                                    9. (c) 108^ Ans.                                                                Note: The sum of the angles of a        polygon = (N - 2)180                                                                      (5 - 2)180                                                                        = (3)180                                                                        = 540^ in all                                                             540/5 = 108^ each  Ans.           :RA                                     :Q                                      :SB                                     :SH0528A        B                       :SH0928C        D                       :SH0739E                                :SP196036245036266052245068             :SP245068196068196068196068             :SF                                     10. Given: AB || CD; <B = 140^;         <D = 150^. Find: <E.                                                            (a) 10^  (b) 30^  (c) 40^                                                       (d) 50^  (e) 70^                        :RCE                                    10. (e) 70^ Ans.                                                                NOTE: Draw a line                       perpindicular to lines AB               and CD.                                                                         The sum of the angles in                polygon ABEDC =                                                                 (5 - 2) x 180^ = 540^                                                           Both <A and <C = 90^                                                            90^ + 140^ + <E + 150^ + 90^ = 540^                                                                      <E = 70^ Ans.  :ET                                     :ET